Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders
نویسندگان
چکیده
BACKGROUND Efficient industrial processes for converting plant lignocellulosic materials into biofuels are a key to global efforts to come up with alternative energy sources to fossil fuels. Novel cellulolytic enzymes have been discovered in microbial genomes and metagenomes of microbial communities. However, the identification of relevant genes without known homologs, and the elucidation of the lignocellulolytic pathways and protein complexes for different microorganisms remain challenging. RESULTS We describe a new computational method for the targeted discovery of functional modules of plant biomass-degrading protein families, based on their co-occurrence patterns across genomes and metagenome datasets, and the strength of association of these modules with the genomes of known degraders. From approximately 6.4 million family annotations for 2,884 microbial genomes, and 332 taxonomic bins from 18 metagenomes, we identified 5 functional modules that are distinctive for plant biomass degraders, which we term "plant biomass degradation modules" (PDMs). These modules incorporate protein families involved in the degradation of cellulose, hemicelluloses, and pectins, structural components of the cellulosome, and additional families with potential functions in plant biomass degradation. The PDMs were linked to 81 gene clusters in genomes of known lignocellulose degraders, including previously described clusters of lignocellulolytic genes. On average, 70% of the families of each PDM were found to map to gene clusters in known degraders, which served as an additional confirmation of their functional relationships. The presence of a PDM in a genome or taxonomic metagenome bin furthermore allowed us to accurately predict the ability of any particular organism to degrade plant biomass. For 15 draft genomes of a cow rumen metagenome, we used cross-referencing to confirmed cellulolytic enzymes to validate that the PDMs identified plant biomass degraders within a complex microbial community. CONCLUSIONS Functional modules of protein families that are involved in different aspects of plant cell wall degradation can be inferred from co-occurrence patterns across (meta-)genomes with a probabilistic topic model. PDMs represent a new resource of protein families and candidate genes implicated in microbial plant biomass degradation. They can also be used to predict the plant biomass degradation ability for a genome or taxonomic bin. The method is also suitable for characterizing other microbial phenotypes.
منابع مشابه
De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes
BACKGROUND Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. RESULTS We describe a compu...
متن کاملSubstrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers
Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of l...
متن کاملPerspective of Microbial Species Used in Lignocelluloses Bioconversion
Lignocellulosic wastes are abundant, renewable and inexpensive sources of energy. This wastes contains large amount of residual plant biomass which is non edible material obtained from plant cell walls. Biomass could be obtained from crop, domestic liquid fuel, municipal solid waste and agricultural residuals. In nature, cellulose, hemicellulose and lignin are major component of plant biomass t...
متن کاملMetabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hun...
متن کاملCellulolytic potential under environmental changes in microbial communities from grassland litter
In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf l...
متن کامل